HD-MEAs play a role in the functional characterization of human iPSC-derived dopaminergic neurons

Maria Sundberg from the Boston Children’s Hospital, Harvard Medical School, and colleagues, recently reported in Nature Communications a study on the reciprocal copy number variations (CNVs) of 16p11.2 gene region, associated with a wide spectrum of neuropsychiatric and neurodevelopmental disorders. For the functional analysis of the developing iPSC-derived dopaminergic (DA) neuron network, complementary-metal-oxide-semiconductor (CMOS)-based high-density microelectrode arrays (HD-MEAs), MaxOne System by MaxWell Biosystems was extensively used. 16p.11.2 Reciprocal copy number variations (CNVs) in neuropsychiatric disorders 16p.11.2 CNVs have been implicated in…

Read More

Observing the activity of human-derived neurons in health and in disease

The combination of two technologies—induced pluripotent stem cells and high-density microelectrode arrays—offers an unprecedented platform to study human brain activity in detail outside the body.    Back in 2006, Prof. Yamanaka and colleagues revealed a technique to reprogram adult skin cells into embryonic-like cells called induced pluripotent stem cells or iPSCs. This Nobel Prize winning technology enables access to human neurons derived from adult blood or skin cells in a high-throughput manner, thus opening up the possibilities to study neurological…

Read More
Contacts










Albisriederstrasse 253
8047 Zurich, Switzerland

+41 44 244 24 24

Schedule a call

info@mxwbio.com

Subscribe to our Newsletter