MaxOne for Retinal Studies

MaxOne, a high-density microelectrode array (HD-MEA) system, is best suited for vision research. Combining MaxOne with a light stimulation set-up allows every scientist to access and investigate retinal ganglion cell function ex vivo.

MaxOne MEA Chip

Retinal Ganglion Cells on MaxOne

High-resolution enables recording of every retinal ganglion cell
- 26,400 electrodes
- 8 mm² sensor area
- 3,265 els. per mm²
- Low noise (2.4 μVrms)
- 20 kHz sampling rate
- Up to 78 dB amp. gain

Identify the Function of Retinal Ganglion Cells (RGCs)

Record and identify every retinal ganglion cell type on the MEA.

The light response of every retinal ganglion cell (RGC) on the MEA can be recorded and analyzed using MaxOne.

MaxOne’s signal-to-noise ratio + high spatio-temporal resolution allow the analysis of RGC axonal signals.

Flashing static light reveals different RGC firing properties: ON type, OFF type, or ON-OFF type.

Direction-selective RGC responses can be extracted using moving stimuli.

Raster plot
ON-OFF RGCs

Preferred direction of ganglion cells

Action potential map of one RGC

Record and identify every retinal ganglion cell type on the MEA.

The light response of every retinal ganglion cell (RGC) on the MEA can be recorded and analyzed using MaxOne.

MaxOne’s signal-to-noise ratio + high spatio-temporal resolution allow the analysis of RGC axonal signals.

Flashing static light reveals different RGC firing properties: ON type, OFF type, or ON-OFF type.

Direction-selective RGC responses can be extracted using moving stimuli.
MaxOne
High-Density Microelectrode Array Platform

Reveal Defined Receptive Field Mosaics of RGCs

Extract and analyze receptive field mosaics of retinal ganglion cells at unprecedented resolution.
MaxOne records multiple RGCs simultaneously and captures visual receptive field mosaics activated by moving bar stimulation.

- Firing responses of ON-OFF direction-selective RGCs reveal their preferred direction.
- Highly resolved receptive field mosaics show little overlap between RGCs of the same type.

Raster plots of ON-OFF ganglion cell responses to motion

RGC receptive field

Spike Sorting

Single electrode

High-density electrodes

Sorted spikes

ISI v.: Inter-spike interval violation

MaxOne's high spatial resolution facilitates reliable spike sorting.
Multiple electrodes detect spikes from an RGC. The additional spatial information improves the accuracy of spike clustering.

Retina Holder

MaxOne Tissue Holder flattens the retina on the MEA for repeatable and stable experiments.
The tissue holder keeps the retina pressed and fixed on the MEA throughout the experiment, in the presence of solution perfusion.
- 3-axis manipulator allows precise control of the holder.
- A membrane or a fine mesh can be used.
- A magnetic plate serves as a stand for the perfusion tubes.

References:

MaxWell Biosystems AG
Mattenstrasse 26
4058 Basel, Switzerland

info@mxwbio.com

Disclaimer
The contents of this document are provided by MaxWell Biosystems, 'as is'. MaxWell Biosystems makes no representations nor warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to the specification at any time without notice. All trademarks are the property of their respective owners.

www.mxwbio.com