@article{Franks2005,
title = {Impedance characterization and modeling of electrodes for biomedical applications},
author = {Wendy Franks and Iwan Schenker and Patrik Schmutz and Andreas Hierlemann},
url = {http://ieeexplore.ieee.org/document/1440608/},
doi = {10.1109/TBME.2005.847523},
issn = {00189294},
year = {2005},
date = {2005-06-13},
journal = {IEEE Transactions on Biomedical Engineering},
volume = {52},
number = {7},
pages = {1295-1302},
abstract = {A low electrode-electrolyte impedance interface is critical in the design of electrodes for biomedical applications. To design low-impedance interfaces a complete understanding of the physical processes contributing to the impedance is required. In this work a model describing these physical processes is validated and extended to quantify the effect of organic coatings and incubation time. Electrochemical impedance spectroscopy has been used to electrically characterize the interface for various electrode materials: platinum, platinum black, and titanium nitride; and varying electrode sizes: 1 cm2, and 900 mu m2. An equivalent circuit model comprising an interface capacitance, shunted by a charge transfer resistance, in series with the solution resistance has been fitted to the experimental results. Theoretical equations have been used to calculate the interface capacitance impedance and the solution resistance, yielding results that correspond well with the fitted parameter values, thereby confirming the validity of the equations. The effect of incubation time, and two organic cell-adhesion promoting coatings, poly-L-lysine and laminin, on the interface impedance has been quantified using the model. This demonstrates the benefits of using this model in developing better understanding of the physical processes occurring at the interface in more complex, biomedically relevant situations.},
keywords = {MEA Technology},
pubstate = {published},
tppubtype = {article}
}
A low electrode-electrolyte impedance interface is critical in the design of electrodes for biomedical applications. To design low-impedance interfaces a complete understanding of the physical processes contributing to the impedance is required. In this work a model describing these physical processes is validated and extended to quantify the effect of organic coatings and incubation time. Electrochemical impedance spectroscopy has been used to electrically characterize the interface for various electrode materials: platinum, platinum black, and titanium nitride; and varying electrode sizes: 1 cm2, and 900 mu m2. An equivalent circuit model comprising an interface capacitance, shunted by a charge transfer resistance, in series with the solution resistance has been fitted to the experimental results. Theoretical equations have been used to calculate the interface capacitance impedance and the solution resistance, yielding results that correspond well with the fitted parameter values, thereby confirming the validity of the equations. The effect of incubation time, and two organic cell-adhesion promoting coatings, poly-L-lysine and laminin, on the interface impedance has been quantified using the model. This demonstrates the benefits of using this model in developing better understanding of the physical processes occurring at the interface in more complex, biomedically relevant situations.
@article{Jenkner2004,
title = {Cell-based CMOS sensor and actuator arrays},
author = {Martin Jenkner and Marco Tartagni and Andreas Hierlemann and Roland Thewes},
url = {http://ieeexplore.ieee.org/document/1362853/},
doi = {10.1109/JSSC.2004.837082},
issn = {00189200},
year = {2004},
date = {2004-11-30},
journal = {IEEE Journal of Solid-State Circuits},
volume = {39},
number = {12},
pages = {2431-2437},
abstract = {In recent years, increasing knowledge about in vitro cell handling and culturing has encouraged a variety of CMOS-based approaches to stimulate and detect electrical activity of biological cells. This paper outlines in a topical review the scope of cell-based biosensors and actuators for in vitro applications ranging from single-cell detection to multisite probing of complex neural tissue. Recent examples are selected to demonstrate how standard CMOS processes have been used to engineer arrays with different functionality.},
keywords = {MEA Technology, Review},
pubstate = {published},
tppubtype = {article}
}
In recent years, increasing knowledge about in vitro cell handling and culturing has encouraged a variety of CMOS-based approaches to stimulate and detect electrical activity of biological cells. This paper outlines in a topical review the scope of cell-based biosensors and actuators for in vitro applications ranging from single-cell detection to multisite probing of complex neural tissue. Recent examples are selected to demonstrate how standard CMOS processes have been used to engineer arrays with different functionality.
@article{Baltes2004,
title = {CMOS microelectrode array for the monitoring of electrogenic cells},
author = {Flavio Heer and Wendy Franks and Axel Blau and S Taschini and Christiane Ziegler and Andreas Hierlemann and Henry Baltes},
url = {http://www.sciencedirect.com/science/article/pii/S0956566304000806?via%3Dihub},
doi = {10.1016/j.bios.2004.02.006},
issn = {0956-5663},
year = {2004},
date = {2004-03-19},
journal = {Biosensors & Bioelectronics},
volume = {20},
number = {2},
pages = {358-366},
abstract = {Signal degradation and an array size dictated by the number of available interconnects are the two main limitations inherent to standalone microelectrode arrays (MEAs). A new biochip consisting of an array of microelectrodes with fully-integrated analog and digital circuitry realized in an industrial CMOS process addresses these issues. The device is capable of on-chip signal filtering for improved signal-to-noise ratio (SNR), on-chip analog and digital conversion, and multiplexing, thereby facilitating simultaneous stimulation and recording of electrogenic cell activity. The designed electrode pitch of 250 mu m significantly limits the space available for circuitry: a repeated unit of circuitry associated with each electrode comprises a stimulation buffer and a bandpass filter for readout. The bandpass filter has corner frequencies of 100 Hz and 50 kHz, and a gain of 1000. Stimulation voltages are generated from an 8-bit digital signal and converted to an analog signal at a frequency of 120 kHz. Functionality of the read-out circuitry is demonstrated by the measurement of cardiomyocyte activity. The microelectrode is realized in a shifted design for flexibility and biocompatibility. Several microelectrode materials (platinum, platinum black and titanium nitride) have been electrically characterized. An equivalent circuit model, where each parameter represents a macroscopic physical quantity contributing to the interface impedance, has been successfully fitted to experimental results.},
keywords = {ETH-CMOS-MEA, MEA Technology},
pubstate = {published},
tppubtype = {article}
}
Signal degradation and an array size dictated by the number of available interconnects are the two main limitations inherent to standalone microelectrode arrays (MEAs). A new biochip consisting of an array of microelectrodes with fully-integrated analog and digital circuitry realized in an industrial CMOS process addresses these issues. The device is capable of on-chip signal filtering for improved signal-to-noise ratio (SNR), on-chip analog and digital conversion, and multiplexing, thereby facilitating simultaneous stimulation and recording of electrogenic cell activity. The designed electrode pitch of 250 mu m significantly limits the space available for circuitry: a repeated unit of circuitry associated with each electrode comprises a stimulation buffer and a bandpass filter for readout. The bandpass filter has corner frequencies of 100 Hz and 50 kHz, and a gain of 1000. Stimulation voltages are generated from an 8-bit digital signal and converted to an analog signal at a frequency of 120 kHz. Functionality of the read-out circuitry is demonstrated by the measurement of cardiomyocyte activity. The microelectrode is realized in a shifted design for flexibility and biocompatibility. Several microelectrode materials (platinum, platinum black and titanium nitride) have been electrically characterized. An equivalent circuit model, where each parameter represents a macroscopic physical quantity contributing to the interface impedance, has been successfully fitted to experimental results.
@conference{Franks2003,
title = {CMOS monolithic microelectrode array for stimulation and recording of natural neural networks},
author = {W. Franks and F. Heer and McKay I. and S. Taschini and R. Sunier and C. Hagleitner and A. Hierlemann and H. Baltes},
url = {http://ieeexplore.ieee.org/document/1216927/},
doi = {10.1109/SENSOR.2003.1216927},
year = {2003},
date = {2003-06-08},
organization = {IEEE International Solid-State Sensors and Actuators Conference},
abstract = {An array of platinum electrodes has been integrated with analog and digital circuitry in standard CMOS technology for stimulation and recording of natural neural networks. The array utilizes a shifted electrode design that has been electrically characterized and modeled. The electrode and its circuitry form a repeatable unit, which can be multiplied to achieve a larger array. Each circuitry unit contains a buffer for stimulation and a bandpass filter for readout. In contrast tn traditional electrode arrays used for measuring action potentials [I-61, this device is capable of on-chip signal filtering, improving the signal to noise ratio (SNR), on-chip analog to digital conversion (preventing further signal degradation), and simultaneous recording and stimulation.},
keywords = {Action Potential, ETH-CMOS-MEA, MEA Technology, Stimulation},
pubstate = {published},
tppubtype = {conference}
}
An array of platinum electrodes has been integrated with analog and digital circuitry in standard CMOS technology for stimulation and recording of natural neural networks. The array utilizes a shifted electrode design that has been electrically characterized and modeled. The electrode and its circuitry form a repeatable unit, which can be multiplied to achieve a larger array. Each circuitry unit contains a buffer for stimulation and a bandpass filter for readout. In contrast tn traditional electrode arrays used for measuring action potentials [I-61, this device is capable of on-chip signal filtering, improving the signal to noise ratio (SNR), on-chip analog to digital conversion (preventing further signal degradation), and simultaneous recording and stimulation.
Presenting measurements of neuronal preparations with a novel CMOS-based microelectrode array at high-spatiotemporal-resolution on subcellular, cellular, and network level.
J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, V. Viswam, I. L. Jones, M. Fiscella, R. Diggelmann, A. Stettler, U. Frey, D. J. Bakkum, and A. Hierlemann, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab Chip, vol. 15, no. 13, pp. 2767–2780, May 2015.
Reviewing the current understanding of microelectrode signals and the techniques for analyzing them, with focus on the ongoing advancements in microelectrode technology (in vivo and in vitro) and recent advanced microelectrode array measurement methods that facilitate the understanding of single neurons and network function.
M. E. J. Obien, K. Deligkaris, T. Bullmann, D. J. Bakkum, and U. Frey, “Revealing Neuronal Function through Microelectrode Array Recordings,” Front. Neurosci., 8:423, Jan 2015.
A high-resolution CMOS-based microelectrode array featuring 1,024 low-noise readout channels, 26,400 electrodes at a density of 3,265 electrodes per mm2, including on-chip 10bit ADCs and consuming only 75 mW.
M. Ballini, J. Muller, P. Livi, Y. Chen, U. Frey, A. Stettler, A. Shadmani, V. Viswam, I. L. Jones, D. Jackel, M. Radivojevic, M. K. Lewandowska, W. Gong, M. Fiscella, D. J. Bakkum, F. Heer, and A. Hierlemann, “A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro,” IEEE Journal of Solid-State Circuits, vol. 49, no. 11, pp. 2705-2719, 2014.
Demonstrating a method to electrically visualize action potential propagation on axons and revealing
large variations in velocity.
D. J. Bakkum, U. Frey, M. Radivojevic, T. L. Russell, J. Muller, M. Fiscella, H. Takahashi, and A. Hierlemann, “Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites,” Nature Communications, 4:2181, Jul 2013.
Recording and modeling extracellular action potentials of Purkinje cells at subcellular resolution.
U. Frey, U. Egert, F. Heer, S. Hafizovic, and A. Hierlemann, “Microelectronic System for High-Resolution Mapping of Extracellular Electric Fields Applied to Brain Slices,” Biosensors and Bioelectronics, vol. 24, no. 7, pp. 2191-2198, 2009.
Controlling BMP-2 expression to modulate the electrophysiological properties of cardiomyocytes using an HD-MEA for detailed monitoring.
C. D. Sanchez-Bustamante, U. Frey, J. M. Kelm, A. Hierlemann, and M. Fussenegger,
“Modulation of Cardiomyocyte Electrical Properties Using Regulated Bone Morphogenetic Protein-2 Expression,” Tissue Engineering Part A, vol. 14, no. 12, pp. 1969-1988, 2008.
Want to learn more? Schedule a call with one of our application scientists:
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies. Read more about our Privacy Policy
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.