

MaxOne

High-Resolution Functional Imaging

MaxOne HD-MEA

MaxOne, the most powerful electrophysiology platform for recording and stimulating electrogenic cells in-vitro.

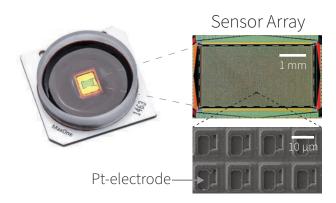
MaxOne is a CMOS-based high-density microelectrode array (HD-MEA) system. This enables compact yet powerful amplifiers, filters, and digitizers to be integrated within the MEA well—close to the cells under study.

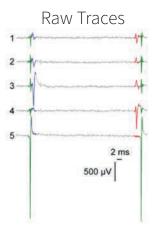
With MaxOne, each cell on the MEA can be accessed by multiple electrodes for recording and stimulation. MaxOne enables long term monitoring of single cell activity, as well as the dynamics of the entire network.

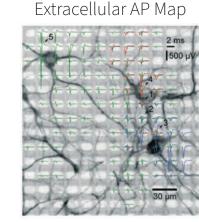
Every cell in the network

- → 26'400 electrodes
- \rightarrow 3.85 x 2.10 mm² sensor area.
- → 17.5 µm electrode pitch

Flexible stimulation


- → 32 stimulation units
- → Voltage & current mode
- **→** Single cell resolution


Data analysis tools


- **→** Preprocessing
- **→** Visualization
- → Statistics & reports

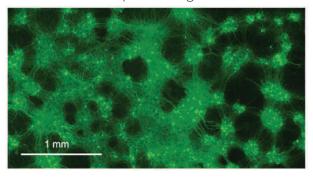
High Spatio-Temporal Resolution + High Quality Signals

- → Allows recording inside cell-culture incubators
 → Accessories available for acute tissue experiments
- Perform microscopy using upright objectives
- → Tested in different in-vitro preparations (retina, brain slices, cell cultures, etc.)

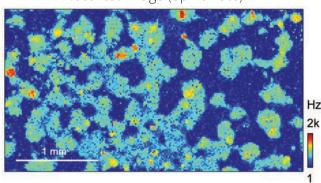
Isolate extracellular action potentials (APs) from individual cells easily.

Electrodes with the best signals from each cell can be selected to facilitate spike sorting.

MaxOne Key Features

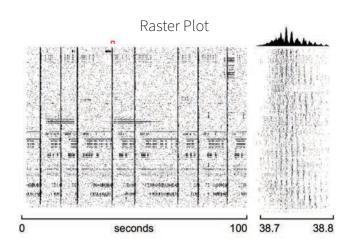


Whole Sample Electrical Imaging


Localize active cells on the MEA during experiments.

The morphological structure of a primary cortical cell culture was imaged using an upright microscope with 10x objective. MAP2 staining was used to visualize the neurons. The optical image closely matches the electrical image obtained using MaxOne. The electrical image provides the location of the cells, as well as information on the activity of the cells, such as spike rate and amplitude.

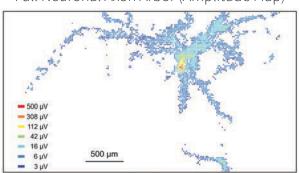
Optical Image


Electrical Image (Spike Rate)

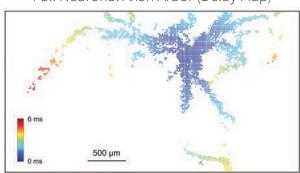
Smart Population Recording

Identify defined cells for long term recording and further analyses.

Different combinations of parameters can be used to automatically select a defined set of cells to be recorded, such as spike rate, amplitude, etc. The raster plot shows the dynamics of the network activity using 1'020 active electrode sites. Burst features can be investigated in detail (one burst zoomed in).



Axon Tracking


Analyze subcellular features, such as full axonal arbors in single neurons.

Electrical signals tracked along neurites enable to investigate novel parameters. High-resolution tracking of axonal action potential propagation allows for investigating changes in axonal conduction velocity.

Full Neuronal Axon Arbor (Amplitude Map)

Full Neuronal Axon Arbor (Delay Map)

MaxOne Specifications

MaxOne System Features

Recording Unit and Hub

Dimensions (L \times W \times H)	Recording unit: 15 × 9.5 × 2.5 cm ³
	Hub: 18.5 × 28 × 9 cm ³
System status indicator	LED
Incubator friendly	Yes, for Rec. Unit
Chip compatibility	Small (PSM)
	Large (PLM)

MaxOne Chip Features

Well Dimensions

Ring diameter (Inner)	PSM: 19 mm PLM: 32 mm
Ring diameter (Outer)	PSM: 24 mm PLM: 35 mm
Ring height	8 mm

PLM

PSM

Microelectrodes and Sensor Area

Total no. of electrodes	26'400
El. center-to-center dist.	17.5 μm
Electrode material	Platinum*
Surface topography	<2.0 µm
Electrode sizes	$8.75 \times 12.50 \mu\text{m}^2$
Active sensing area	$3.85 \times 2.10 \text{ mm}^2$
Electrode density	3'265 els./mm ²

^{*} With Platinum black coating

Recording Channels

Adjustable gain	Yes
No. of recording channels	1'020
Sampling rate	20 kHz/channel
Typical noise**	$3.3 \mu V_{rms}$
Routing flexibility	Yes

^{**} Action potential (AP) frequency range (300 Hz - 10 kHz)

Electrical Stimulation Units

No. of stimulation units	32
Maximum voltage stim.	± 1.0 V
Pattern generation	Yes

Software

Data acquisition/analysis	MaxLab Live
Raw data file format	HDF5 (*.h5)

MaxWell Biosystems AG

Albisriederstrasse 253 8047 Zurich, Switzerland info@mxwbio.com www.mxwbio.com +41 44 244 24 24

About MaxWell Biosystems

MaxWell Biosystems develops and markets advanced electrophysiology instrumentation for cell assays. Our toolset, consisting of an integrated microelectrode array, acquisition hardware and software, is used in preclinical drug discovery, safety pharmacology, and basic research. MaxOne allows to record and stimulate electrogenic cells, such as neurons and cardiomyocytes, at unprecedented spatial and temporal resolution—providing higher fidelity data, enabling future research, and accelerating drug discovery and development.

Disclaimer

The contents of this document are provided by MaxWell Biosystems, 'as is'. MaxWell Biosystems makes no representations nor warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to the specification at any time without notice. All trademarks are the property of their respective owners.