
Upcoming Webinars:
Open Source Hardware & Software Modules for Multimodal Electrophysiology Experiments with Prof. Dr. Mircea Teodorescu & Kateryna Voitiuk
(ミルチャ・テオドレスク教授とカテリーナ・ヴォイティウク氏による多様な電子生理学的実験におけるオープンソースハードウェア及びソフトモジュール)
2023年10月24日
ウェビナーを見逃されましたか? いつでもご視聴いただけます。

Long-term morphological and functional dynamics of human stem cell-derived neuronal networks with Dr. Rouhollah Habibey
(ルホラ・ハビベイ博士によるヒト幹細胞由来ニューロンネットワークの長期的形態・機能ダイナミクス)
2023年9月6日
More details
Speaker

Host

Dr. Rouhollah Habibey
ブスカンプ研究室,
ボン大学(ドイツ)
Dr. Marie Obien
MaxWell Biosystems
Switzerland
Title
Long-term morphological and functional dynamics of human stem cell-derived neuronal networks
(ヒト幹細胞由来ニューロンネットワークの長期的形態・機能ダイナミクス)
要旨
Long-term 発達中のヒトiPSC由来神経細胞ネットワークの長期的な電気生理学的特性解析には、時間経過に伴うネットワーク全体の形態学的変化を理解することが必要です。パラレル顕微鏡とCMOS記録により、均質に分布するニューロンからニューロン集団の形成へと大規模な構造変化が明らかとなりました。このことは、神経細胞の位置が常に変化し、それに伴ってネットワーク活動マップの空間分布が月日とともに変化することをもたらします。
講演者紹介
Rouhollah Habibey (ルホラ・バビエイ) 。テヘラン大学(イラン、2006年)で生理学の学位を取得後、イタリア工科大学(IIT)ジェノバ校(イタリア、2015年)で神経科学と脳技術の博士号を取得。ドレスデン工科大学(ドイツ、2021年)に続き、ボン大学(ドイツ)のブスカンプ教授の研究室にてポスドクとして研究に従事。 MEA、マイクロ流体工学、オプトジェネティクスを組み合わせたヒト由来神経回路のボトムアップ工学が研究テーマ。

Impaired Activity in Motor Neurons modeling ALS with Daniel Sommer
(ALSをモデル化した運動ニューロンの活動障害)
2022年10月4日
More details
Host

Speaker

Dr. Marie Obien
MaxWell Biosystems
Switzerland
Daniel Sommer
AG Catanese: Cell Biology of Neurodegenerative Diseases
Ulm University, Germany
概要
背景: 筋萎縮性側索硬化症(ALS)は、上部および下部運動ニューロンが侵され、診断から通常3~5年で死に至る致死的な神経変性疾患です。これまでの研究により、in vitroおよびin vivoモデルにおいて、シナプスや神経細胞の活動の変化が病態の根底にあることが明らかになっていますが、神経変性過程への具体的な貢献についてはまだ議論が続いています。特に、神経細胞の過活動と低活動はALSの病態に影響を与えることが知られており、大きな議論の的となっています。
方法: 我々は、高密度多電極アレイ(HD-MEA)技術を用い、ヒトiPS細胞由来のC9orf72変異体および健康な人のMNの電気生理学的特性を縦断的にモニターしました。さらに、変異型運動ニューロンにおける活動変化の元となる分子的な原因を解明するために、このデータと対応するトランスクリプトーム解析を組み合わせました。最後に、SKチャネルブロッカーであるアパミンの投与により、観察された表現型のレスキューを試みました。
結果: 我々の研究により、ALSC9orf72 の運動ニューロンには、初期に活動亢進が認められ、神経細胞の老化に伴い急激に減 少し、神経変性が始まると認められなくなることが判明しました。また、これまでの論文によりALSのMNではシナプスが減少していることが知られていますが、ALSC9orf72のMN培養では、ネットワークのシナプスが全体的に減少していることが観察されました。HD-MEAの結果と同様に、ALSC9orf72のMNでは、初期の時点でシナプスの転写産物が増加し、その後、時間の経過とともに有意に減少することが観察されました。また、SKチャネル阻害剤であるアパミンの投与により、電気生理学的および転写レベルでALS MNの神経保護効果が確認されました。
結論: 本研究は、神経活動の長期的な発達に関する洞察を提供し、これらの機能的変化を加齢に依存した転写プログラムに関連付けることで、ALSC9orf72 MNにおける電気生理学的変化に関する矛盾した証拠の説明として、シナプスの成熟化現象を示唆するものです。

What’s your cell story?
Characterizing the activity of human iPSC derived-neurons in 2D and 3D cultures at high resolution
(2Dおよび3D培養におけるヒトiPSC由来ニューロンの活動の高解像度特性化)
2021年11月11日
More details
Host

Dr. Marie Obien
CCO at MaxWell Biosystems
Speaker

Speaker

Dr. Silvia Ronchi
Scientific Application Specialist at MaxWell Biosystems
Giulio Zorzi
Product Manager & Application Engineer at MaxWell Biosystems
Abstract
Alongside our participation at the SfN Annual Meeting 2021, we will host two sessions presenting you replays of a Case Study presentation based on a paper published at Advanced Biology and our MaxTwo showcase. Both will be followed by a Live Q&A session. During these sessions, we will introduce our technology, products and applications and allow all attendees to ask questions to our team during the live Q&A session.
These sessions will be hosted by Dr. Marie Obien who will briefly introduce the company, technology, products and applications. The case study is presented by Dr. Silvia Ronchi, which is entitled, “Electrophysiological phenotype characterization of human iPSC derived-neuronal cell lines by means of high-density microelectrode arrays”, highlighting how the neuronal activity in 2D samples can be easily captured, label-free, at single-cell resolution by using MaxWell Biosystems’ high-density microelectrode array (HD-MEA) platforms. Giulio Zorzi showcases MaxTwo, a powerful system to characterize the function of human iPSC-derived neurons that can help you advance your research in different applications. The presentations will be followed by a live Q&A session.
Overall, the presentations will provide an overview on how HD-MEA technology can efficiently advance research in 2D and 3Dhuman derived from induced pluripotent stems cells (hiPSCs) brain models, as promising tools for investigating development, disease progression, and to test drug toxicity/efficacy in-vitro, and accelerate drug development for neurodegenerative diseases.

Presenting MaxTwo: A powerful system to characterize the function of human iPSC-derived neurons
(MaxTwo: ヒトiPS細胞由来神経細胞の機能を特徴付ける強力なシステム)
September 29, 2021 | 10am / 5pm (CET), 1am / 8am (PDT), 4am / 11am (EDT)
2021年9月29日午後5時 / 30日午前0時 (日本時間)
詳細
Host

Speaker

Dr. Marie Obien
VP Marketing and Sales at MaxWell Biosystems
Giulio Zorzi
Product Manager & Application Engineer at MaxWell Biosystems
Abstract
In our live broadcast from our laboratory here in Zurich, Switzerland, we will:
- Showcase how to use the MaxTwo System
- Present how MaxTwo can help you advance your research in different applications
- Engage the audience and answer questions throughout the session

Phenotyping of neurodevelopmental and psychiatric disorders with human iPSC-derived dopaminergic neurons
(ヒトiPS細胞由来ドーパミン性作動ニューロンによる神経発達障害と精神障害の表現型)
July 8, 2021 | 5pm (CET), 8am (PST), 11am (EDT)
2021年7月9日 0am (日本時間)
詳細
Host

Dr. Marie Obien
VP Marketing and Sales at MaxWell Biosystems
Speaker

Speaker

Dr. Maria Sundberg
Research Fellow, Group of Prof. Sahin, Boston Children’s Hospital
Abstract
In recent years, the genetic causes of autism and schizophrenia have been studied intensively. In addition to monogenic deficits, deletions or duplications of specific chromosomal loci have also been associated with neurodevelopmental and psychiatric disorders. One of these regions is 16p11.2, which contains 29 protein coding genes, most of which are also expressed in the brain. Clinical studies have shown that deletion of 16p11.2 leads to severe developmental deficits, intellectual disability, and autism. On the other hand, patients with duplication of 16p11.2 locus have an increased risk of developing schizophrenia, bipolar disorder, depression and autism. Deficits in the dopamine signaling can cause behavioral problems and deficits in social interactions in the patients with autism and schizophrenia.
In this webinar, our speakers will:
- Speak about how they studied the effects of 16p11.2 copy number variations on dopamine signaling by differentiating human iPSCs, with either a 16p11.2 duplication or deletion, into dopaminergic (DA) neurons in vitro and how they characterized molecular and functional phenotypes of these neurons compared to healthy control neurons.
- Present their assessment of network activity using MaxOne, MaxWell’s high-density micro-electrode array (MEA) platform and give a short introduction to the data analysis pipeline used in this study. They will show a brief overview of the detection of synchronised sensors and bursting patterns, including a link to the used code.
- Discuss their results: They detected that the cells carrying 16p11.2 deletion had an increased soma size, increased synaptic marker expression, and hyperactive DA-neuron networks compared to healthy control DA-neurons. Increased RhoA expression was also detected in the 16p11.2 deletion DA-neurons. Treatment of the neurons with a specific RhoA pathway inhibitor, Rhosin, rescued the network hyperactivation and the abnormal morphological development of the DA-neurons with 16p11.2 deletion. These results show that inhibition of RhoA pathway can serve as a potential therapeutic target for neurodevelopmental and neuropsychiatric disorders associated with 16p11.2 deletion.

SpikeInterface, a Unified Framework for Spike Sorting (スパイクインターフェイス、スパイクソーティングのための統合フレームワーク)
March 25, 2021 | 5pm (CET), 8am (PST), 11am (EDT)
詳細
Host

Dr. Marie Obien
VP Marketing and Sales at MaxWell Biosystems
Speaker

Speaker

Dr. Szilard Sajgo
Application Specialist at MaxWell Biosystems
Dr. Alessio Buccino
Postdoctoral Fellow at ETH Zürich
Abstract
Understanding how assemblies of neurons encode information requires recording of large populations of cells. In recent years, high-density multi-electrode arrays (HD-MEAs) have been developed to record simultaneously from thousands of electrodes. Each electrode records from multiple surrounding neurons at the same time. In order to assign electrical signals recorded by HD-MEAs to individual neurons, a critical step called spike sorting needs to be performed. During this step, the extracellular action potentials originating from hundreds to thousands of neurons need to be disentangled from the background noise and from each other.
We had an introduction to spike sorting in a webinar earlier this year (link to the replay) and are happy to host this new webinar as a follow-up.
Dr. Szilárd Sajgó, R&D scientist at MaxWell Biosystems, will:
- Explain the basic concept of spike sorting
- Highlight how HD-MEAs facilitate reliable spike clustering.
This is followed by Dr. Alessio Buccino, ETH Postdoctoral Fellow in the group of Prof. Hierlemann, who will:
- Present SpikeInterface, a Python framework designed to unify preexisting spike sorting technologies into a single codebase and to facilitate straightforward comparison and adoption of different approaches.
- Explain how, with a few lines of code, researchers can reproducibly run, compare, and benchmark most modern spike sorting algorithms; pre-process, post-process, and visualize extracellular datasets; validate, curate, and export sorting outputs; and more.
- Demonstrate the use of SpikeInterface on real and simulated datasets to reduce the burden of manual curation and to more comprehensively benchmark automated spike sorters.

Morphological, functional & transcriptomic correlation of retinal organoids to the human retina(網膜オルガノイド とヒトの網膜との形態学的、機能的、トランスクリプトームの相関関係について)
February 18, 2021 | 5pm (CET), 8am (PST), 11am (EDT)
2021年2月19日午前1時(日本時間)
詳細
Host

Dr. Marie Obien
VP Marketing and Sales at MaxWell Biosystems
Speaker

Speaker

Dr. Szilard Sajgo
Application Specialist at MaxWell Biosystems
Abstract
Genetic disorders of the human retina cause visual impairment to millions of people worldwide. The retina is a well characterized tissue at the back of the eye, and is a potential target for visual restoration therapies. Light-sensitive human retinal organoids recapitulate cell-types, circuitry and transcriptomic profiles of the human retina, offering a relevant tool for translational studies.
In this webinar, Dr. Szilárd Sajgó, our R&D scientist and an expert in retina research will:
- Introduce the different analyses of retinal function that can be performed using high-density microelecrode arrays (HD-MEAs),
- Explain how the efficacy of visual restoration therapies can now be easily assessed using HD-MEAs.
This is followed by Ms. Martina De Gennaro, Doctoral Researcher at Institute of Molecular and Clinical Ophtalmology Basel (IOB) and co-author of this recent Cell paper, who will:
- Demonstrate how the generation of a library of 285,441 single-cell transcriptomes from light-responsive human retinae and retinal organoids at different time points allows the comparison of developmental rates and genomic expression profiles,
- Explain how electrophysiological assessments, such as HD-MEA and calcium imaging, ensure the collection of transcriptomes from functional, light-responsive human retinae ex-vivo,
- Discuss how this research is allowing to define cellular targets for disease mechanisms investigation in organoids and targeted repair in the human retina.

Fast and Accurate Spike Sorting for Thousands of Channels(何千ものチャネルに対する迅速かつ正確なスパイソーティング)
January 14, 2021 | 5pm (CET), 8am (PST), 11am (EDT)
2021年1月15日午前1時(日本時間)
詳細
Host

Dr. Marie Obien
VP Marketing and Sales at MaxWell Biosystems
Speaker

Speaker

Dr. Szilard Sajgo
Application Specialist at MaxWell Biosystems
Abstract
Understanding how assemblies of neurons encode information requires recording of large populations of cells. In recent years, high-density multi-electrode arrays (HD-MEAs) and silicon probes have been developed to record simultaneously from thousands of electrodes. Each electrode records from multiple surrounding neurons at the same time. In order to assign electrical signals recorded by HD-MEAs to individual neurons, a critical step called spike sorting needs to be performed . During this step, the extracellular action potentials originating from hundreds to thousands of neurons need to be disentangled from the background noise and from each other.
In this webinar, our speakers will:
- explain the basic concept of spike sorting and highlight how HD-MEAs facilitate reliable spike clustering.
- present a fast and accurate spike sorting algorithm, validated with in vivo and in vitro ground truth experiments.
- explain how the SpyKING CIRCUS software is optimized for solving temporally overlapping spikes in large-scale extracellular recordings.

Co-hosted with FUJIFILM Cellular Dynamics:
Electrophysiological Phenotype Characterization of Human iPSC-Derived Neuronal Cell Lines by Means of High-Density Microelectrode Arrays(高密度微小電極アレイによるヒトiPS細胞由来神経細胞株の電気生理学的表現型の特徴付け)
October 15, 2020 | 5pm (CET), 8am (PST), 11am (EDT)
2020年10月16日 | 午前0時(日本時間)
詳細
Host

Host

Marie Obien, Ph.D.
VP Marketing and Sales at MaxWell Biosystems
Simon Hilcove, Ph.D.
Assoc. Director Product Development at FUJIFILM Cellular Dynamics
Speaker

Silvia Ronchi
Doctorate Student at ETH Zürich
Abstract:
Recent advances in the field of cellular reprogramming have opened a route to study the fundamental mechanisms underlying common neurological disorders. High-density microelectrode-arrays (HD-MEAs) provide unprecedented means to study neuronal physiology at different scales, ranging from network through single-neuron to subcellular features.
In this webinar, we will:
- Introduce how HD-MEAs was used to characterize and compare human induced-pluripotent-stem-cell (iPSC)-derived dopaminergic and motor neurons, including isogenic neuronal lines modeling Parkinson’s disease and amyotrophic lateral sclerosis in-vitro.
- Present the metrics used for phenotype characterization and drug testing.
- Demonstrate the ability to detect drug effects with HD-MEA.

Label-free functional characterization of 3D organoids at single-cell resolution(単一細胞解像度での3Dオルガノイドのラベルフリー機能的評価)
September 10, 2020 | 5pm (CET), 8am (PST), 11am (EDT)
2020年9月11日 | 午前0時(日本時間)
詳細
Host

Speaker

Dr. Marie Obien
VP Marketing and Sales at MaxWell Biosystems
Dr. Szilard Sajgo
Application Specialist at MaxWell Biosystems
Abstract
Human organoids that originate from human induced pluripotent stem cells (h-iPSCs) are emerging as promising tools for investigating development and disease progression. In order to adopt human organoids for rapid and cost-effective drug screenings, it is necessary to assess their cell type composition, gene expression patterns and physiological function. The electrical activity of brain, retina or muscle organoids can now be easily captured, label-free, at single-cell resolution by using MaxWell Biosystems’ high-density microelectrode array (HD-MEA) technology.
In this webinar, the speakers will:
- Introduce high-resolution functional imaging of organoids with the MaxTwo HD-MEA platform
- Present results from organoids modeling different brain compartments
- Demonstrate the potential of HD-MEA technology for characterizing the physiological function of human brain organoids and for testing compounds.

Featuring MaxLab Live: All-in-One Software for HD-MEA
(MaxLab Live特集: 高密度解像度MEAのためのオールインワンソフトウェア)
July 21, 2020 | 5pm (CET), 8am (PST), 11am (EDT)
2020年7月22日| 午前0時(日本時間)
詳細
Host

Speaker

Dr. Marie Obien
VP Marketing and Sales at MaxWell Biosystems
Dr. David Jäckel
Senior Product Manager at MaxWell Biosystems
Abstract
The high-density microelectrode arrays (HD-MEAs) high-content electrophysiology platforms MaxOne and MaxTwo allow label-free recording and stimulation of every active cell on a dish at unprecedented spatio-temporal resolution.
A powerful and easy-to-use software interface is key to reveal the full potential of this technology. MaxLab Live is an all-in-one software for live visualization, recording, and analysis of extracellular HD-MEA signals from different biological preparations.
In this webinar, the speakers will:
- Introduce you to the MaxLab Live Software and User Interface
- Show how to get the visualization of your data in real-time at the level you need – from whole sample network to sub-cellular activity
- Present how to run standardized and repeatable experiments with MaxLab Live Assays

Assessing retinal function in health and disease at single-cell resolution
(単一細胞解像度での健康及び疾患の網膜機能評価)
June 11, 2020 | 5pm (CET), 8am (PST), 11am (EDT)
2020年6月12日| 午前0時(日本時間)
詳細
Host

Speaker

Dr. Marie Obien
VP Marketing and Sales at MaxWell Biosystems
Dr. Szilard Sajgo
Application Scientist at MaxWell Biosystems
Abstract
Genetic diseases of the human retina cause visual impairment to millions of people worldwide. The retina is a well characterized tissue at the back of the eye, and is a potential target for visual restoration therapies. The efficacy of these therapies can now be easily assessed using high-density microelectrode arrays (HD-MEA). In addition, HD-MEA technology can also be used to assess disease phenotypes, as well as other aspects of visual processing and development.
This webinar will include the following:
- Introduction to different analyses of retinal function using HD-MEAs
- Showcase of how HD-MEAs can contribute to visual restoration therapies
- Presentation of a case study involving FRMD7, a defective gene in human congenital nystagmus

Functional characterization of human iPSC-derived neurons at single-cell resolution
(単一細胞解像度でのヒトiPS細胞由来神経細胞の機能的特性評価)
April 23, 2020 | 5pm (CET), 8am (PST), 11am (EDT)
2020年4月24日| 午前0時(日本時間)
詳細
Host

Speaker

Dr. Marie Obien
VP Marketing and Sales at MaxWell Biosystems
Dr. Michele Fiscella
VP Scientific Affairs at MaxWell Biosystems
Abstract
Recent developments in induced pluripotent stem cell (iPSC) technology have enabled easier access to human cells in vitro. With increasing availability of human iPSC-derived neurons, both healthy and disease cell lines, screening compounds for neurodegenerative diseases on human cells can potentially be performed in the earlier stages of drug discovery. To accelerate the functional characterization of iPSC-derived neurons and the effect of compounds, reproducible and relevant results are necessary.
In this webinar, the speakers will:
- Introduce high-resolution functional imaging of human iPSC-derived neurons
- Showcase how to extract functional features of hundreds of cells in a cell culture sample label-free
- Discuss electrophysiological parameters for characterizing the differences among several human neuronal cell lines