Publication

Generation of functional posterior spinal motor neurons from hPSCs-derived human spinal cord neural progenitor cells

June 27, 2022
ActivityScan Assay
AxonTracking Assay
Custom Analysis
Functional Phenotyping
MaxLab Live
MaxOne
MaxOne Chip
Network Assay
Patch Clamp
Spike Sorting
Neuronal Cell Cultures
Jax H. Xu, Yao Yao, Fenyong Yao, Jiehui Chen, Meishi Li, Xianfa Yang, Sheng Li, Fangru Lu, Ping Hu, Shuijin He, Guangdun Peng, Naihe Jing
Download Resource
Access Resource
Back

Abstract

Details

Spinal motor neurons deficiency results in a series of devastating disorders such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA) and spinal cord injury (SCI). These disorders are currently incurable, while human pluripotent stem cells (hPSCs)-derived spinal motor neurons are promising but suffered from low-efficiency, functional immaturity and lacks of posterior cellular identity. In this study, we have established human spinal cord neural progenitor cells (hSCNPCs) via hPSCs differentiated neuromesodermal progenitors (NMPs) and demonstrated the hSCNPCs can be continuously expanded up to 40 passages. hSCNPCs can be rapidly differentiated into posterior spinal motor neurons with high efficiency. The functional maturity has been examined in detail. Moreover, a co-culture scheme which is compatible for both neural and muscular differentiation is developed to mimic the neuromuscular junction (NMJ) formation in vitro. Together, these studies highlight the potential avenues for generating clinically relevant spinal motor neurons and modeling neuromuscular diseases through our defined hSCNPCs.Competing Interest StatementThe authors have declared no competing interest.