Retina

MaxOne for Retinal Applications —

 

 

MaxOne is ideal for vision research.

Combining MaxOne with light stimulation set-ups allows every scientist to access and investigate retinal ganglion cell function ex vivo.

High-resolution enables researchers to record every retinal ganglion cell.
  • 26,400 electrodes
  • 8 sqmm sensor area
  • 3,265 electrodes per sqmm

 

Download Brochure

 

What You Can Do

 

Identify the Function of Retinal Ganglion Cells (RGCs)

Record and identify every retinal ganglion cell type on the MEA.

The light response of every retinal ganglion cell (RGC) on the MEA can be recorded and analyzed using MaxOne.
  • MaxOne’s signal-to-noise ratio + high spatio-temporal resolution allow the analysis of RGC axonal signals.
  • Flashing static light reveals different RGC firing properties: ON type, OFF type, or ON-OFF type.
  • Direction-selective RGC responses can be extracted using moving stimuli.

 

Reveal Defined Receptive Field Mosaics of RGCs

Extract and analyze receptive field mosaics of retinal ganglion cells at unprecedented resolution.

MaxOne records multiple RGCs simultaneously and captures visual receptive field mosaics activated by moving bar stimulation.
  • Firing responses of ON-OFF direction-selective RGCs reveal their preferred direction.
  • Highly resolved receptive field mosaics show little overlap between RGCs of the same type.

 

Spike Sorting

MaxOne’s high spatial resolution facilitates reliable spike sorting.

Multiple electrodes detect spikes from an RGC. The additional spatial information improves the accuracy of spike clustering.

* ISI v.: Inter-spike interval violation

MaxOne Accessory —

Retina Holder

MaxOne Tissue Holder flattens the retina on the MEA for repeatable and stable experiments.

The tissue holder keeps the retina pressed and fixed on the MEA throughout the experiment, in the presence of solution perfusion.
  • 3-axis manipulator allows precise control of the holder.
  • A membrane or a fine mesh can be used.
  • A magnetic plate serves as a stand for the perfusion tubes.

 

Publications —

Retinal Applications

Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex

Hillier, Daniel; Fiscella, Michele; Drinnenberg, Antonia; Trenholm, Stuart; Rompani, Santiago B; Raics, Zoltan; Katona, Gergely; Jüttner, Josephine; Hierlemann, Andreas; Rozsa, Balazs; Roska, Botond

Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex Journal Article

Nature Neuroscience, 20 (7), pp. 960–968, 2017, ISSN: 1097-6256.

Abstract | Links | BibTeX

Structures of Neural Correlation and How They Favor Coding

Franke, Felix; Fiscella, Michele; Sevelev, Maksim; Roska, Botond; Hierlemann, Andreas; Azeredo da Silveira, Rava

Structures of Neural Correlation and How They Favor Coding Journal Article

Neuron, 89 (2), pp. 409-422, 2016, ISSN: 10974199.

Abstract | Links | BibTeX

Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity

Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond

Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity Journal Article

Neuron, 89 (1), pp. 177-193, 2016, ISSN: 10974199.

Abstract | Links | BibTeX

A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array

Jones, Ian L; Russell, Thomas L; Farrow, Karl; Fiscella, Michele; Franke, Felix; Müller, Jan; Jäckel, David; Hierlemann, Andreas

A method for electrophysiological characterization of hamster retinal ganglion cells using a high-density CMOS microelectrode array Journal Article

Frontiers in Neuroscience, 9 , pp. 360, 2015, ISSN: 1662453X.

Abstract | Links | BibTeX

Visual coding with a population of direction-selective neurons

Fiscella, Michele; Franke, Felix; Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava ; Hierlemann, Andreas

Visual coding with a population of direction-selective neurons Journal Article

Journal of Neurophysiology, 114 (4), pp. 2485-2499, 2015, ISSN: 0022-3077.

Abstract | Links | BibTeX

A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture.

Krol, Jacek; Krol, Ilona; Alvarez, Claudia Patricia Patino; Fiscella, Michele; Hierlemann, Andreas; Roska, Botond; Filipowicz, Witold

A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture. Journal Article

Nature Communications, 6 , pp. 7305, 2015, ISSN: 2041-1723.

Abstract | Links | BibTeX

Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection

Fiscella, Michele; Farrow, Karl; Jones, Ian L; Jäckel, David; Müller, Jan; Frey, Urs; Bakkum, Douglas J; Hantz, Péter; Roska, Botond; Hierlemann, Andreas

Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection Journal Article

Journal of Neuroscience Methods, 211 (1), pp. 103-113, 2012, ISSN: 01650270.

Abstract | Links | BibTeX

Twitter Updates
Contacts








Mattenstrasse 26
4058 Basel, Switzerland

+41 61 551 10 70

+41 61 551 10 71

info@mxwbio.com